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Physics Informed Neural Nets (PINNs)

Let u(x, t) be the actual solution

PDE

ut +Nx[u] = 0, x ∈ D, t ∈ [0, T ]

Initial Condition

u(x, 0) = h(x), x ∈ D

Boundary Conditions

u(x, t) = g(x, t), t ∈ [0, T ], x ∈ ∂D
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Physics Informed Neural Nets (PINNs)

Let the neural solution be uθ(x, t)

Functional Residual

Rpde(x, t) := ∂tuθ +Nx[uθ(x, t)]

Conditional Residual (I.C.)

Rt(x) := uθ(x, 0)− h(x)

Conditional Residual (B.C.)

Rb(x, t) := uθ(x, t)− g(x, t)

PINN Loss Function

L(θ) := 1
Npde

Npde∑
i=1

Rpde(x ir , t
i
r)
2 + λ1

1
Nt

Nt∑
i=1

Rt(x it)
2 + λ2

1
Nb

Nb∑
i=1

Rb(x ib, t
i
b)
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Why Physics Informed Neural Nets (PINNs) ?

PINNs have been achieving ever newer feats of solving complicated PDEs numerically
while offering an attractive trade-off between accuracy and speed of inference.

In this work, we investigate the stability of PINNs near finite-time blow-ups from a
rigorous theoretical viewpoint.

4 / 25



Why Physics Informed Neural Nets (PINNs) ?

EG := ∥u − uθ∥ ẼT :=

(
N∑
n=1

wn|Rθ|p
)1/p

Risk Upperbound (Theorem 2.6)1

EG ≤ CpdeẼT + CpdeC
1
p
quadN

−α
p

It was proven in the above mentioned theorem – for the first time – that one can
minimize certain empirical errors to find provably good approximations to any PDE.

The strength of this result lies in its reliance on only mild conditions on the PDE.
1Mishra and Molinaro, “Estimates on the generalization error of physics-informed neural networks for

approximating PDEs”. 5 / 25



Why Finite-Time Blow-Ups ?

• Existing studies with PINNs (including studies of its failure modes) focus on cases
where the true solution is “nice”.

• A finite-time blow-up – a phenomenon where the solution u becomes infinite at
some points as t approaches a certain time T < ∞, while the solution is
well-defined for all 0 < t < T , supx∈D |u(x, t)| → ∞ as t → T−

• du
dt = u2, u(0) = u0, u0 > 0 is an ODE whose solution blows-up at t = 1

u0

• There are multiple real-world phenomena whose PDE models have finite-time
blow-ups and these singularities are known to correspond to practically relevant
processes – such as in chemotaxis models, thermal-runoff models and
combustion models.
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Why Finite-Time Blow-Ups ?

In a recent experimental studies with PINNs2, experimental evidence was shown for
PINNs potentially discovering PDE solutions with blow-up even when their explicit

descriptions are not known.

Here we look to understand this interface from a rigorous viewpoint and show how well
the theoretical risk bounds correlate to their experimentally observed values - in

certain blow-up situations.

2Wang et al., Asymptotic self-similar blow up profile for 3-D Euler via physics-informed neural networks.
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Why is Burgers’ PDE Interesting?

In order to assess the efficacy of PINNs in the vicinity of a blow-up phenomenon, we
have chosen a very specific case - that of the Burgers’ PDE where analytically exact
solutions with finite-time blow-up are known - as is needed for a controlled study!

Burgers’ Equation (inviscid)

∂tu + (u · ∇)u = 0
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Main Results



(d+1)-Burgers’ PDE

We analyse the following PDE in the domain D ⊂ Rd and t ∈ [− 1√
2
+ δ, δ] for the

following initial condition

PDE

∂tu + (u · ∇)u = 0

Initial Condition

u(t = t0) = ut0 , t0 = − 1√
2
+ δ
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(d+1)-Burgers’ PDE : Residuals

Let the neural net we aim to train be uθ(x, t) ∈ Rd .

Then the residual terms for this predictor are,

Conditional Residual
Rt := uθ(t = t0)− u(t = t0)

The residual term for the functional loss is

Functional Residual
Rpde := ∂tuθ + (uθ · ∇)uθ
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(d+1)-Burgers’ PDE : L2-Risk

The L2 population risk of the predictor that we are interested in is,

∫
Ω
∥u(x, t)− uθ(x, t)∥22 dx dt

where u is the exact solution and uθ is the neural surrogate.

This definition of L2-risk measures the distance of the neural surrogate from the true
PDE solution.
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(d+1)-Burgers’ PDE : An Upper Bound for the L2−Risk

Theorem 1
Let u ∈ C 1(D × [t0, T ]) be the unique solution of the (d + 1)−dimensional
Burgers’ PDE. Then for any C 1 surrogate solution, say uθ , the L2-risk with respect
to the true solution is bounded as,

log

(∫
Ω

∥u(x, t)− uθ(x, t)∥22 dx dt
)
≤ log

(
C1C2
4

)
+

C1√
2

(1)

where,

C1 = d2∥∇uθ∥L∞(Ω) + 1+ d2∥∇u∥L∞(Ω)

C2 =
∫
D
∥Rt∥22 dx +

∫
Ω

∥∥Rpde
∥∥2
2 dx dt + d2∥∇uθ∥L∞(Ω)

∫
Ω
∥uθ∥22 dx dt

+ d2∥∇u∥L∞(Ω)

∫
Ω
∥u∥22 dx dt
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(d+1)-Burgers’ PDE: An Upper Bound for the L2−Risk

C1 = d2∥∇uθ∥L∞(Ω) + 1+ d2∥∇u∥L∞(Ω)

C2 =
∫
D
∥Rt∥22 dx +

∫
Ω

∥∥Rpde
∥∥2
2 dx dt + d2∥∇uθ∥L∞(Ω)

∫
Ω
∥uθ∥22 dx dt

+ d2∥∇u∥L∞(Ω)

∫
Ω
∥u∥22 dx dt

Note the following key points about this bound,

• This can be estimated just by knowing an upper bound on ∥∇u∥L∞(Ω) and ∥u∥2.
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(d+1)-Burgers’ PDE: An Upper Bound for the L2−Risk

C1 = d2∥∇uθ∥L∞(Ω) + 1+ d2∥∇u∥L∞(Ω)

C2 =
∫
D
∥Rt∥22 dx +

∫
Ω

∥∥Rpde
∥∥2
2 dx dt + d2∥∇uθ∥L∞(Ω)

∫
Ω
∥uθ∥22 dx dt

+ d2∥∇u∥L∞(Ω)

∫
Ω
∥u∥22 dx dt

Note the following key points about this bound,

• This has explicit dependence on the norm of the surrogate (through C2) and its
spatial gradient (through both C1 and C2). Hence providing a theoretical foundation
for the role of functional regularization in PINN training3.

3Wang et al., Asymptotic self-similar blow up profile for 3-D Euler via physics-informed neural networks.
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(1+1)-Burgers’ PDE Near Finite-Time Blow Up

In one dimension, for Burgers’s PDE we can get a more interesting bound! Towards that
we consider working in the domain x ∈ [−1, 1] and t ∈ [−1+ δ, δ), parameterized by δ.

PDE
ut + uux = 0

Initial Conditions
u(x,−1+ δ) =

x
−2+ δ

Boundary Conditions

u(−1, t) =
1

1− t

u(1, t) =
1

t − 1

These initial and boundary conditions correspond to an exact solution to the Burgers’
PDE i.e. u(x, t) = x

t−1
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(1+1)-Burgers’ PDE Near Finite-Time Blow Up : Residuals

As earlier, for the neural net uθ(x, t) attempting to solve this PDE, we define the
following residuals,

Conditional Residuals
Rtb,θ(x) = uθ(x,−1+ δ)− x

−2+ δ

Rsb,−1,θ(t) = uθ(−1, t)− 1
1− t

, Rsb,1,θ(t) = uθ(1, t)−
1

t − 1

Functional Residual
Rint,θ(x, t) = ∂tuθ(x, t) + uθ(x, t) · ∂xuθ(x, t)
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(1+1)-Burgers’ PDE Near Finite-Time Blow Up : An Upper Bound for L2−Risk

Theorem 2
Let u ∈ C 1((−1+ δ, δ)× (−1, 1)) be the unique solution of the (1+1)-D Burgers’
equation for any k ≥ 1 and u∗ = uθ∗ be the neural surrogate. Then the
population risk of it is bounded as,

(∫ δ

−1+δ

∫ 1

−1
|u(x, t)− uθ(x, t)|2 dxdt

) 1
2

≤
[
1+ CeC

] [∫ 1

−1
Rtb,θ∗(x)dx +

∫ δ

−1+δ

∫ 1

−1
R2
int,θ∗(x, t)dxdt

+ 2C2b

(∫ δ

−1+δ
R2
sb,−1,θ∗(t)dt +

∫ δ

−1+δ
R2
sb,1,θ∗(t)dt

)

+ 2C1b

(∫ δ

−1+δ
R2
sb,−1,θ∗(t)dt

) 1
2

+

(∫ δ

−1+δ
R2
sb,1,θ∗(t)dt

) 1
2

 (2)
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(1+1)-Burgers’ PDE Near Finite-Time Blow Up : An Upper Bound for L2−Risk

where C = 1+ 2Cux , with

Cux = ∥ux∥L∞ =

∥∥∥∥ 1
t − 1

∥∥∥∥
L∞([−1+δ,δ])

=
1

1− δ

C1b = ∥u(1, t)∥2L∞ =

∥∥∥∥ 1
1− t

∥∥∥∥2
L∞([−1+δ,δ])

=
1

(1− δ)2

C2b = ∥uθ∗(1, t)∥L∞([−1+δ,δ]) +
3
2

∥∥∥∥ 1
t − 1

∥∥∥∥
L∞([−1+δ,δ])

= ∥uθ∗(1, t)∥L∞([−1+δ,δ]) +
3
2

(
1

1− δ

)
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(1+1)-Burgers’ PDE Near Finite-Time Blow Up : Stability

Even though we set up the initial and boundary conditions to reflect a finite-time
singularity, our bound for the L2 population risk indicates the stability of the PINN risk,
defined as,

E[|Rint,θ(x, t)|2] + E[|Rtb,θ|2] + E[|Rsb,−1,θ|2] + E[|Rsb,1,θ|2]

The “stability”4 here means that if this PINN risk is found to be O(ϵ) then that would
directly imply that the L2 population risk is also O(ϵ).

4Wang et al., “Is L2 Physics Informed Loss Always Suitable for Training Physics Informed Neural Network?”
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Experiment and Analysis



(2+1)-Burgers’ PDE with Finite-Time Blow Up

Consider solving the (2+ 1)−Burgers’ PDE on t ∈ [− 1√
2
+ δ, δ] where δ ∈ [0, 1√

2
)

Initial Conditions

u1,t0 =
(1+

√
2− 2δ)x1 + x2

2δ(
√
2− δ)

; u2,t0 =
x1 − (1−

√
2+ 2δ)x2

2δ(
√
2− δ)

Boundary Conditions
u1(x1 = 0) =

x2
1− 2 · t2

; u1(x1 = 1) =
1+ x2 − 2 · t
1− 2 · t2

u2(x2 = 0) =
x1

1− 2 · t2
; u2(x2 = 1) =

x1 − 1− 2 · t
1− 2 · t2

These I.C. and B.C. correspond to this exact solution u1 = x1+x2−2x1t
1−2t2 , u2 = x1−x2−2x2t

1−2t2
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(2+1)-Burgers’ PDE with Finite-Time Blow Up : LHS vs RHS Plots for Theorem 1

(a) width=30 (b) width=100

Figure 1: This figure shows the RHS vs LHS plot of Equation (1) from Theorem 1 for different
values of δ for PINNs of 2 different widths. (Recall that here the blow up is at δ ∼ 0.7)
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Future Directions



Future Directions

• Can modifications to the PINN formalism be made to make them more sensitive to
the local structure of the solutions and thus help detect the existence of
finite-time blow-ups in PDEs?

• Are there any PINN losses for the (d + 1)-dimensional Burgers – or for
Navier-Stokes in general – that is “stable”5, as was shown to be true in our
(1+ 1)-dimensional Burgers’ PDE setup?

• Do PINN loss functions for fluid PDEs satisfy the Villani condition6, thereby
establishing that Langevin Monte Carlo can effectively minimize PINN losses?

5Wang et al., “Is L2 Physics Informed Loss Always Suitable for Training Physics Informed Neural Network?”
6Gopalani and Mukherjee, “Global Convergence of SGD On Two Layer Neural Nets”.
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